

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

### Vibrational Assignment for Iron (III) Schiff Base Complexes

M. Campos-Vallette<sup>a</sup>; G. Diaz<sup>ab</sup>; S. Godoy<sup>a</sup>; C. Aballay<sup>a</sup>; J. Costamagna<sup>ac</sup>; R. Latorre<sup>a</sup>

<sup>a</sup> Faculty of Sciences, Dept. of Chemistry, Univ. of Chile, Santiago-Chile <sup>b</sup> Dept of Chemistry, Univ. de Playa Ancha., Valparaiso, Chile <sup>c</sup> Univ. de Santiago de Chile, Santiago, Chile

**To cite this Article** Campos-Vallette, M. , Diaz, G. , Godoy, S. , Aballay, C. , Costamagna, J. and Latorre, R.(1991) 'Vibrational Assignment for Iron (III) Schiff Base Complexes', *Spectroscopy Letters*, 24: 5, 699 — 710

**To link to this Article: DOI:** 10.1080/00387019108018150

**URL:** <http://dx.doi.org/10.1080/00387019108018150>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

VIBRATIONAL ASSIGNMENT FOR IRON (III) SCHIFF BASE COMPLEXES

M. Campos-Vallette, G. Diaz F.\*<sup>1</sup>, S. Godoy M., C. Aballay,  
J. Costamagna and R. Latorre C.

Faculty of Sciences, Univ. of Chile, Dept. of Chemistry  
P.O. Box 653. Santiago-Chile.

Key words: Infrared and Raman spectra, Iron(III) Schiff Base Complexes, Structure.

**Abstract**

A complete vibrational assignment of the i.r. and Raman bands of several substituted Schiff bases and their Fe(III) complexes has been done. On this basis, a tentative type of structure for complexes is proposed. The influence of the electron donor-acceptor characteristics and size of substituents on the structure of ligands and complexes is discussed.

**INTRODUCTION**

Few works dealing with spectroscopical and structural studies on iron (III) Schiff base complexes have been performed in the last three decades [1]; to our knowledge no one concerns a complete vibrational assignment. Recently, we have synthesized complexes of the type  $\text{Fe}(5\text{-bromosalicylaldehyde-}\gamma\text{-aniline})\text{Cl}_2$

---

\* Univ. de Playa Ancha. Dept of Chemistry. P.O. Box 34-V  
Valparaiso Chile.

° Univ. de Santiago de Chile, P.O. Box 5659, Santiago Chile.

with Y= 2,4-diF (1), 2,4-diCl (2), 2,4-diBr (3), 2-CH<sub>3</sub>,4-Br (4), 2,5-diCH<sub>3</sub> (5) and 2,4-diOCH<sub>3</sub> (6) and we have decided to accomplish a complete vibrational assignment in order to infer about their structural type; this because our attemps to obtain X-Ray data were unsuccesful. On this basis we have also considered to study the influence that the size and electron donor-acceptor characteristics of substituents have on the structure of ligands and complexes.

#### EXPERIMENTAL

Ligands and complexes were synthesized by using general methods [2]. The i.r. spectra were registered in KBr mulls by using a Bruker IFS 88 and IFS 113V spectrophotometers in the region 4000 to 400 cm<sup>-1</sup> and 500 to 100 cm<sup>-1</sup> respectively. The Raman spectra were scanned from 100 to 3500 cm<sup>-1</sup> on a Bruker FRA 106 mounted on an IFS 66 FT-IR optical bench.

The vibrational assignment of ligands 1, 4 and 6 and of their corresponding complexes is collected in Table 1. These compounds were selected from the series since they show extreme spectral behaviour arising from the electron donor-acceptor and size characteristics of substituents.

#### RESULTS AND DISCUSSION

The complex formation manifests itself by the existence of the OH vibrations ( $\nu(OH)$  and  $\delta(OH)$ ) only in the spectra of ligands, and the  $\nu(Fe-O)$ ,  $\nu(Fe-N)$  and chelate ring modes appearing only in the spectra of complexes. The coordination is also accompanied by spectral shifting mainly of the  $\nu(N=C)$ ,  $\nu(Ar-N)$ ,  $\nu(Ar-C)$ ,  $\nu(Ar-O)$ ,  $\nu(C-H)azomethine$  and  $\nu(C-$

Table 1. Observed infrared and Raman frequencies ( $\text{cm}^{-1}$ ) and vibrational assignment for ligands (L) 1, 4 and 6 and the corresponding iron(III) Schiff base complexes (C).

|   |           | 1              |          | 4            |             | 6           |                        |                                             |
|---|-----------|----------------|----------|--------------|-------------|-------------|------------------------|---------------------------------------------|
|   |           | ir. Rel. Int.* | Raman    | ir.          | Raman       | ir.         | Raman                  | Assignment                                  |
| L | 3420      | b,w            |          | 3420 b,vw    |             | 3420 b,vw   |                        | $\delta(\text{OH})$                         |
| C | 3400      | b,w            |          | 3415 b,vw    |             | 3420 b,vw   |                        | Water impurity                              |
| L | 3200-2900 | vvw            |          | 3200-2800 vw | 3200-2800 w | 3200-2800 v |                        | $\delta(\text{CH})$                         |
| C | 3200-2900 | vw             |          | 3200-2800 vw | 3200-2800 w | 3200-2800 v |                        | "                                           |
| L | 1620      | s              |          | 1610 s       | 1612 s      | 1617 s      | 1618 s                 | $\nu(\text{C}=\text{N})$                    |
| C | 1637      | s              | 1641 s   | 1628 s       | 1639 s      | 1630 s      | 1638 s                 | "                                           |
| L | 1596      | s              | 1604 s   | 1582 w       | 1580 w      | 1595 s      | 1598 s                 | $\nu(\text{C}_1\text{C}_6)$ arom.           |
| C | 1610      | s              | 1599 s   | 1590 m       | 1592 s      | 1600 s      | 1603 s                 | "                                           |
| L |           |                |          |              | 1580 m      | 1582 s      | $\nu(\text{CC})$ arom. |                                             |
| C |           |                |          |              | 1572 sh     | 1582 sh     | "                      |                                             |
| L | 1560      | m,b            | 1562 s   | 1553 m       | 1556 s      | 1560 vw     | 1562 s                 | $\nu(\text{CC})$ arom.                      |
| C | 1532      | s              | 1535 m   | 1532 s       | 1540 m      | 1530 s      | 1537 w                 | "                                           |
| L | 1500      | s              | 1502 m   | 1475 s       |             | 1502 s      | 1503 m                 | $\nu(\text{CC})$ arom.                      |
| C | 1500      | s              | 1507 m   | 1470 s       | 1483 m      | 1502 s      | 1508 w                 | "                                           |
| L | 1475      | s              | 1472 m   | 1465 sh      | 1470 w      | 1475        | 1475 m                 | $\nu(\text{CC})$ arom.                      |
| C | 1475      | s              |          | 1460 sh      |             | 1470        | 1466 w                 | "                                           |
| L |           |                |          | 1480 sh      |             | 1455 w      |                        | $\delta(\text{Ar}-\text{CH}_3)$             |
| C |           |                |          | 1480 sh      |             | 1455 sh,w   | 1452 sh.               | "                                           |
| L |           |                |          |              | 1432 w      |             | 1435 b,m               | $\nu(\text{O}-\text{CH}_3)$                 |
| C |           |                |          |              | 1438 w      |             | "                      |                                             |
| L |           |                |          | 1428 vvw     | 1428 m      |             |                        | $\nu(\text{CC})$ arom.                      |
| L | 1432 b,w  | 1434 mult.     | 1450 b,w | 1452 w       | 1414 b,w    |             |                        | $\delta(\text{OH})$                         |
| L | 1382 b,w  |                | 1390 b,w | 1398 sh.     | 1378 b,m    |             | 1379 vvw               | $\nu(\text{ArN})$                           |
| C | 1375 m    |                | 1381 m   | 1374 m       | 1381 s      | 1375 m      | 1380 s                 | "                                           |
| L | 1350 m    |                | 1350 w   | 1347 s       | 1346 w      | 1345 s      |                        | $\nu(\text{CC})$ arom.                      |
| C | 1330 m    |                | 1336 m   | 1328 b,m     | 1330 m      | 1342 s      | 1346 b,m               | "                                           |
| L |           |                | 1315 vw  | 1310 vw      | 1314 w      |             |                        | $\delta(\text{CH})$                         |
| L | 1293 sh   |                | 1295 w   | 1277 s,d     |             | 1302 s      | 1308 s                 | $\delta(\text{CH}_a)$                       |
| C | 1300 w    |                | 1291 m   | 1276 sh,m    | 1284 sh.    | 1297 s      | 1303 m                 | "                                           |
| L | 1268 sh   |                | 1260 m   | 1277 s       | 1268 vw     | 1265 m      | 1265 m                 | $\nu(\text{O}-\text{Ar})+\delta(\text{OH})$ |
| C | 1280 sh   |                | 1260 sh. | 1267 s       | 1271 m      | 1268 s      | 1280 b,m               | "                                           |
| L |           |                | 1236 m   | 1235 b,vw    | 1232 vw     |             |                        | Br sensitive                                |
| C | 1235 vw   |                |          | 1240 w       | 1237 m      |             |                        | "                                           |
| L | 1217 b,m  |                | 1219 vw  | 1220 w       |             |             | 1230 b,m               | $\nu(\text{C}-\text{Ar})$                   |
| C | 1213 s    |                | 1215 w   | 1230 m       |             | 1225 s      |                        | "                                           |
| L |           |                |          |              |             | 1203 s      | 1212 sh                | $\nu(\text{Ar}-\text{OCH}_3)$               |
| C |           |                |          |              |             | 1205 s      |                        | "                                           |
| L |           |                | 1200 b,w | 1201 m       |             |             |                        | $\nu(\text{Ar}-\text{CH}_3)$                |
| C |           |                | 1200 m,d | 1203 m       |             |             |                        | "                                           |
| L | 1171 m    |                | 1170 s   | 1170 s,d     |             | 1175 s      | 1181 m                 | $\nu(\text{O}-\text{Ar})+\delta(\text{OH})$ |
| C | 1157 s    |                | 1160 m,s | 1160 s,d     | 1168 m      | 1170 s      | 1173 m                 | "                                           |
| L | 1143 m    |                | 1148 vvw | 1170 s       | 1172 m      | 1155 m      | 1174 m                 | $\delta(\text{CH})$                         |
| C | 1140 sh   |                |          | 1160 s       | 1168 m      | 1165 sh     |                        | "                                           |
| L | 1100 m    |                | 1096 vw  | 1120 m       | 1125 w      | 1130 m      | 1128 m                 | $\delta(\text{CH})$                         |
| C | 1095 m    |                | 1095 w   | 1110 m       | 1114 m      | 1120 m      | 1123 m                 | "                                           |
| L |           |                | 1078 vw  | 1080 vw      | 1086 vw     |             |                        | $\nu(\text{Ar}-\text{Br})$                  |
| C |           |                |          | 1090 vw      | 1088 m      |             |                        | "                                           |
| L | 1074 w    |                | 1074 vw  | 1070 w       |             | 1068 w      | 1073 vvw               | $\nu(\text{Ar}-\text{Br})$                  |
| C | 1074 vw   |                | 1072 vw  | 1080 w       |             | 1068 vw     |                        | "                                           |

(continued)

(Table 1 continued)

|   |               |         |             |           |                               |
|---|---------------|---------|-------------|-----------|-------------------------------|
| L | 1025 vvw      | 1025 w  | 1025 s      | 1032 vvw  | S (CH)                        |
| C | 1014 m        | 1013 w  | 1018 w      | 1017 m    | "                             |
| L |               |         | 1005 vvw,sh | 1000 vvw  | breathing                     |
| C |               |         | 995 w       |           | "                             |
| L | 965 w         | 967 vvw | 957 w       | 953 vvw   | $\beta$ (CH <sub>a</sub> )    |
| C | 1003 m        |         | 1015 m      | 1008 s    | "                             |
| L | 945 vvw       |         | 950 sh, vvw | 955 vw    | $\beta$ (CH)                  |
| C | 938 vvw       |         | 940 vw      | 945 vw    | "                             |
| L | 910 w         | 916 vvw | 912 w       | 912 vvw   | 920 b,v                       |
| C | 962 s         |         | 912 w       | 920 vvw   | $\beta$ (CH)                  |
| L |               |         |             | 913 m     | 921 vvw                       |
| C |               |         |             | 905 sh    | breathing                     |
| L |               | 888 vvw |             | 880 vvw   | "                             |
| C | 870 m         |         | 870 s       | 871 vvw   | $\beta$ (CH)                  |
| L | 868 sh        |         | 872 m       |           | "                             |
| L | 850 sh        |         | 868 sh      | 865 w     | $\beta$ (CH)                  |
| C | 862 s,asym.   |         | 868 m       | 863 m     | "                             |
| L | 844 m         | 846 w   | 850 sh      | 843 m     | 842 m                         |
| C | 850 m         |         | 852 m       | 855 w     | $\beta$ (CH)                  |
| L | 816 m         |         | 818 m       | 815 w     | $\beta$ (CH)                  |
| C | 828 m         | 832 w   | 820 d,m     | 821 vvw   | 825 m                         |
| L | 802 s         |         | 818 s       |           | 834 vvw                       |
| C | 808 m         |         | 800 m       | 793 vvw   | 789 s                         |
| L | 775 w         | 777 w   | 773 w       | 774 vvw   | 780 m                         |
| C | 798 m         | 797 vvw | 785 m       |           | 777 w                         |
| L | 726 w         | 725 w   |             |           | 724 w                         |
| C | 726 w         | 726 w   |             | 727 vvw   | 719 w                         |
| L |               | 668 vvw | 677 sh      |           | 679 w                         |
| C |               |         | 677 m       |           | Br sensit.                    |
| C | 668 m         | 671 w   | 682 d,m     | 683 w     | 669 m                         |
| L | 638 w         | 630 vvw | 631 m       | 628 m     | 631 m                         |
| C | 637 w         | 631 w   | 637 m       | 642 m     | 630 m                         |
| L | 609 w         |         | 618 vvw     |           | 605 w                         |
| C | 609 w         |         | 615 vvw     | 616 sh    | 598 w                         |
| L | 595 vvw       | 599 vvw |             |           | F sensitive                   |
| C | 595 vvw       | 596 vvw |             |           | "                             |
| L |               |         |             | 565 vvw   | 562 w                         |
| C | 548 m,asym.   |         | 560 m       | 560 w     | ring def.                     |
| L | 550 w         |         | 542 m       | 555 vvw   | "                             |
| C | 543 asym.,b,m |         | 542 m       | 531 vvw   | $\times$ (ring)               |
| L | 512 m         | 511 vvw |             |           | "                             |
| C | 508 w         |         |             |           | F sensitive                   |
| C | 510 b,m       |         | 491 m       | 515 b,m   | Metal chelate ring            |
| L | 500 m         |         |             | 510 vvw   | $\gamma$ (ring)               |
| C | 496 sh        |         |             |           | "                             |
| L | 484 w         |         | 470 m       | 482 m     | 480 m                         |
| C | 481 m         | 473 m   | 472 m       | 492 m     | 480 b,w                       |
| C | 470 sh.       |         | 445 w,sh    | 447 b,m   | $\gamma$ (Fe-O)               |
| L | 462 w         |         | 458 vvw     | 461b,vvw  | $\times$ (ring)               |
| C | 445 vvw       | 446 vvw | 437 w       | 441 vvw   | "                             |
| L |               | 432 vvw | 435 vvw     | 417 w     | 420 d,w                       |
| L |               |         | 421 vvw     | 443 d,vvw | $\times$ (ring)               |
| C |               |         |             | 424 vvw   | "                             |
| C | 402 s         | 410 vvw | 401 m       | 405 vvw   | $\gamma$ (Fe-N)               |
| L | 400 vvw       | 400 vvw |             |           | $\delta$ (Ar-F)               |
| C | 381 m         | 382 vvw | 383 m       | 375 sh    | $\gamma$ (Fe-Cl) <sub>t</sub> |

(continued)

(Table 1 continued)

|   |         |          |         |          |           |                               |
|---|---------|----------|---------|----------|-----------|-------------------------------|
| L |         | 366 w    |         |          |           | CH <sub>3</sub> sensit.       |
| C | 359 m   | 350 m    |         | 359 m    |           | $\nu_3$ (Fe-Cl) <sub>t</sub>  |
| L | 345 m   | 341 m    |         |          |           | $\delta$ (Ar-F)               |
| C | 346 m   | 340 b,m  |         |          |           | "                             |
| L |         | 340 m    | 340 m   | 342 vvw  | 335 vw    | Br sensit.                    |
| C | 320 m   | 319 w    | 328 m   | 335 d,m  | 336 w     | "                             |
| L | 294 vvw | 296 vw   |         | 291 vvw  | 300 vw    | skelet. def.                  |
| C | 288 sh  |          | 292 w   | 302 vvw  |           | "                             |
| L |         |          |         | 295 b,vw | 295 b,w   | $\rho$ (Ar-OCH <sub>3</sub> ) |
| C | 279 d,w | 283 b,w  | 281 d,w | 280 b,m  | 277 w     | $\nu^2$ (Fe-Cl) <sub>b</sub>  |
| L |         |          |         |          | 270 w     | $\delta$ skel.                |
| L | 260 w   | 262 w    | 264 b,w | 264 b,w  | 262 sh,vw | $\tau$ (Ar-N)                 |
| L | 239 vvw | 235 b,vw |         |          | 225 vw    | i.p. skel. def.               |
| C | 240 vw  |          | 242 w   | 240 w    | 235 vw    | "                             |
| L | 225 w   |          | 216 b,w | 218 d,w  | 215 vw    | skel. def.                    |
| C | 225 vvw | 226 b,w  | 216 vw  |          | 208 vw    | "                             |
| L | 199 w   |          |         | 197 vw   | 200 b,w   | skel. def.                    |
| C | 191 w   | 184 d,w  |         |          |           | "                             |
| C | 176 w   |          | 192 d,w | 196 w    |           | chelat. ring def.             |
| L |         |          | 169 d,w | 166 vw   | 171 vw    | skel. def.                    |
| C |         |          | 175 m   | 170 b,m  | 167 b,m   | "                             |
| L | 142 vvw | 144 m    | 140 vvw | 139 m    | 142 w     | $\delta$ (Ar-N)               |
| L |         |          |         |          | 132 w     | 130 m skel. def.              |
| C | 138 vvw | 149 w    | 130 vvw | 140 m    | 131 d,w   | "                             |
| C | 119 m   |          | 121 b,m |          | 121 w     | bridge ring def.              |
| L | 109 vw  |          |         |          | 114 vw    | skel. def.                    |
| C | 105 vvw |          | 108 w   |          |           | "                             |

\* s: strong, w : weak, vw: very weak, sh: shoulder,

b: broad, d : double.

\*\* used twice.

C)aromatic modes. Almost all the ligands and the complexes vibrations are shifted by the substitution effect.

#### Vibrational assignment and structural type for complexes

The broad and weak band observed in the ligands at about 3400 cm<sup>-1</sup>, has been assigned to an hydrogen bonded  $\nu$ (O-H) mode of an intramolecular bond between the hydroxilic hydrogen and the N atom. The  $\nu$  (CC) aromatic modes are currently placed between 1600 and 1300 cm<sup>-1</sup>; at least 8 of them were assigned. Only the band at about 1600 cm<sup>-1</sup> shows a frequency shift to

higher energy by complexation; this band could be ascribed to the C<sub>1</sub>-C<sub>6</sub> bond of the benzylidene ring.

The assignment of the  $\nu$  (C=N) (1630  $\text{cm}^{-1}$ ),  $\nu$  (Ar-N) (1374  $\text{cm}^{-1}$ ) and  $\nu$  (Ar-C) (1215  $\text{cm}^{-1}$ ) has been performed in agreement with similar propositions for several related Schiff bases [3].

The strong and broad bands at  $\sim 1260$   $\text{cm}^{-1}$  and at 1180  $\text{cm}^{-1}$  in the spectra of ligands were assigned to a combination of  $\delta(\text{OH})$  and  $\nu(\text{Ar-O})$  modes in agreement with that given by Socrates [4] in phenols. Unfortunately, because of the extreme coupling with other modes in this region we have not observed simplification of these bands by complexation; although for the band at 1180  $\text{cm}^{-1}$  we verify a frequency shift to lower energy by chelation.

No band disappears by complexation about 1280  $\text{cm}^{-1}$  as described by Bailar et al [5] in metal complexes with N, N'-bis(salicylidene)-1,1-(dimethyl)ethylene-diamine. The band at 1440  $\text{cm}^{-1}$  which disappears by chelation is assigned to the  $\delta(\text{OH})$  mode following Socrates [4].

The chelate ring deformations are expected near 1250  $\text{cm}^{-1}$ ; we have not distinguish these modes because of a strong overlapping of several bands observed in that region. Moreover these modes generally display very low relative intensities [6].

We assign the bands at 1290 and 960  $\text{cm}^{-1}$  to the in- and out-of-plane deformations of the azometine hydrogen ( $\delta(\text{CH})_a$  and  $\rho(\text{CH})_a$ ) respectively, following Meic et al. [7] in stilbene. The  $\delta(\text{CH})_a$  mode shows a strong frequency shift by substitution and its energy is practically unmodified by chelation. The  $\rho(\text{CH})_a$  band displays a perfect opposite behaviour.

Following Bailar et al. [5] we assign the bands at  $\sim 670$  and  $500\text{ cm}^{-1}$ , appearing only in the spectrum of complexes, to the metal chelate ring vibrations.

The assignment of the  $\nu(\text{Fe-O})$  and  $\nu(\text{Fe-N})$  modes is based on reported data of related molecules [8-10] and on the current observation that the  $\nu(\text{M-O}) \rightarrow \nu(\text{M-N})$  [5,11].

The  $\nu(\text{Fe-Cl})_{\text{terminal}}$  vibrations were ascribed to the strong absorptions at  $\sim 350$  and  $380\text{ cm}^{-1}$  following reported data [12,13]. We assign the former band to the symmetric mode while the second one should correspond to the asymmetric mode. The band at about  $280\text{ cm}^{-1}$  has been ascribed to a  $\nu(\text{Fe-Cl})_{\text{bridge}}$  mode; this assignment is supported by the trends observed by Nakamoto [12] where the  $\nu(\text{M-X})_{\text{b}} < \nu(\text{M-X})_{\text{t}}$  and by the observed difference between the relative intensities of their ir. and Raman bands.

The chelate and bridge ring deformations should be actives below  $300\text{ cm}^{-1}$  [14].

Other bands were attributed following current assignments.

The identification of the  $\nu(\text{Fe-N})$ ,  $\nu(\text{Fe-Cl})_{\text{t}}$ ,  $\nu(\text{Fe-O})$  and chelate ring vibrations, and the fact that we have not observed the Fe-O-Fe vibrations between  $850-780\text{ cm}^{-1}$  [15] suggests that the coordination does not involve the donor center  $\text{N}_2\text{O}_2$  as in related complexes [5,16], but it goes through a coordination sphere composed by N, O and Cl. The  $\nu(\text{Fe-Cl})_{\text{b}}$  and the bridge ring deformation modes suggest a dimeric structure for the complexes. This analysis and sterical considerations allow us to propose for the complexes the structural type shown in Fig. 1.

#### Substituent effect on the structure of ligands and complexes

It has been observed in related Schiff bases that the tendency to a whole co-planarity is accompanied by an increasing

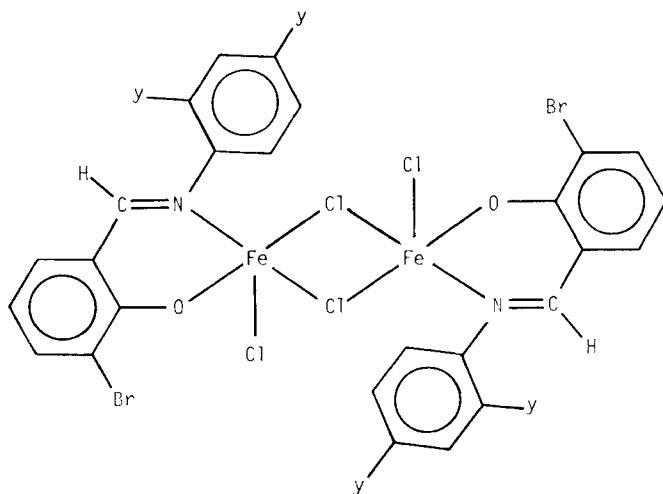



Fig. 1. Type of structure for the  $\text{Fe}(5\text{-Bromosalicylaldehyde-}Y\text{-aniline})\text{Cl}_2$  complexes 1-6.

| 1           | 2        | 3        | 4                        | 5                     | 6                      |
|-------------|----------|----------|--------------------------|-----------------------|------------------------|
| (Y) 2,4-diF | 2,4-diCl | 2,4-diBr | 2-CH <sub>3</sub> , 4-Br | 2,4-diCH <sub>3</sub> | 2,4-diOCH <sub>3</sub> |

of the  $\pi$ -character on the Ar-N bond and a weakness of the N=C bond [3a]; on the other hand, the benzylidene ring has essentially free rotation (barrier ca. 0.4 Kcal/mol) [17]. The observed trend for the  $\nu(\text{C}=\text{N})$  and  $\nu(\text{Ar}-\text{N})$  frequencies of ligands ( $\nu L_1 \sim \nu L_6 < \nu L_4$ ), see Table 1, could be explained in terms of two competitive effects: the steric hindrance and the electron donor-acceptor characteristics of substituents. In fact, the F atom having a high electron acceptor tendency and a small size in comparison to the -OCH<sub>3</sub> group, will produce a decreasing of the  $\pi$ -character of the Ar-N bond; as a consequence, it will favour a lesser non-coplanarity of the molecule. The steric hindrance caused by the metoxi group constraints the

anilinic ring to adopt also a non-coplanar structure for the molecule. Extreme frequencies of the  $\nu(\text{CN})$  and  $\nu(\text{Ar-N})$  modes in ligand 4 are readily explained in terms of the intermediate characteristics of size and electron donor-acceptor tendency of the  $\text{CH}_3$  group relative to the -F and  $-\text{OCH}_3$  substituents. Hence this molecule will display a lesser non-planar structure in comparison to 1 and 6.

The high value of the  $\nu(\text{Ar-C})$  frequency ( $\sim 1220 \text{ cm}^{-1}$ ) in all ligands in comparison to the one in the non-planar molecule N-benzylideneaniline ( $1190 \text{ cm}^{-1}$ ), suggests a reinforcement of the  $\pi$ -character of the Ar-C bond. On the basis of this fact and in terms of the strong interaction between the hydroxilic hydrogen and the N atom [18], allow us to infer that in our ligands a lesser non-planar structure of the benzylidene ring should be favoured.

The trends to the co-planarity of the benzilidene ring and the opposite tendency of the aniline ring in ligands is accompanied by a redistribution of the  $\pi$ -electron around the benzilidene ring and by a  $\text{sp}^2$  hybridization of the N atom. Thus, the  $\nu(\text{Ar-O})$  frequency should be higher than in a free  $\text{Ar-OH}$  ( $\sim 1240 \text{ cm}^{-1}$ ) [4] and the  $\delta(\text{CH})_a$ ,  $\rho(\text{CH})_a$ ,  $\nu(\text{Ar-O})$  and  $\nu(\text{C}_1\text{C}_6)$  modes should be sensitive to the substitution, as it is observed.

The complex formation is accompanied by an increase of the  $\nu(\text{C=N})$  and  $\nu(\text{C}_1\text{C}_6)$  frequencies, and a decrease of the  $\nu(\text{Ar-N})$  and  $\nu(\text{Ar-O})$  frequencies. The  $\nu(\text{Ar-C})$  shows a decreasing in energy in complexes 1 and 6 but an increasing in 4. The observed increase in frequency when passing from complex 4 to 1 and 6, could be interpreted in term of a major trends to the non-coplanarity of the aniline ring conferred by substituents -F and  $-\text{OCH}_3$ . This set of results suggests that the complexation is

accompanied by the adoption of a lesser coplanar structure for the aniline ring, a better  $sp^2$  hybridization of the N atom and a decreasing of the  $\pi$ -electron delocalization on the chelate ring.

Since the substituents -F and -OCH<sub>3</sub> confer to the systems a bigger non coplanarity in relation to the -CH<sub>3</sub> group, we should expect the formation of complexes 1 and 6 to be more favoured than the formation of complex 4. This proposition is supported by the trends observed in the  $\nu(Fe-O)$  values for the distinct complexes. In these terms and on the basis of the  $\nu(Fe-N)$  and  $\nu(Fe-O)$  frequencies we infer that the chelation goes preferentially through the Fe-O bond.

#### CONCLUSIONS

The substituent effect on the stretching modes of the bridge and chelate rings support the proposed assignment for the corresponding deformations. In particular, it is possible to infer that the bridge ring vibrations are practically unaffected by substitution.

The ligand structures are characterized by a non-coplanarity of the aniline ring arising from the influence of the electron donor-acceptor properties and the size of substituents in para position. The trend to the coplanarity of the benzylidene ring is conferred by the intra-molecular interaction between the acidic hydrogen of the OH group and the availability of the lone pair electrons of nitrogen.

The complexation is accompanied by an increasing of the tendency to a lesser co-planarity of the aniline ring and an increasing of the coplanarity of the benzylidene ring.

## ACKNOWLEDGEMENTS

This work was supported by Fondecyt, Grants 0623 and 1115, by Proycts DGI, CNE 11889 from the Universidad de Playa Ancha, DTI Q 2815-8922 from the Universidad de Chile and USACH 8932 CM from the Universidad de Santiago de Chile. We thanks Mr. G. Zachmann from Bruker Analytische Messtechnik GMBH for the scanning of the ir. and Raman spectra.

## REFERENCES

- 1.- A.S. ROTHIN, H.J. BANBERY, F.J. BERRY, T.A. HAMOR, Ch.J. JONES and J.A. CLEVERTY, *Polyhedron* 8, 491(1989); A. GARG and J.P. TANDOM, *J. Prakt. Chem.*, 331, 157(1989); K. DHOOT, R.P. TRIPHATHI, M.L. JANGID and M.P. CHACHARKAR, *J. Radional. Nucl. Chem.*, 119, 489(1987); L. CASELLA, M. GULLOTTI, A. PINTAR, L. MESSONI, A. ROCKENBAUER and M. GYOR, *Inorg. Chem.*, 26, 1031(1987); B.J. KENNEDY, A.C. McGRATH, K.S. MURRAY, B.W. SKELTON and A.H. WHITE, *ibid.*, 26, 483(1987); A. SREEKANTAN and C.C. PATEL, *Proc. Indian Acad. Sci., Sect.A*, 87, 455(1978); Y. NISHIDA, S. OSHIO and S. KIDA, *Inorg. Chim. Acta*, 23, 59(1977); M. GULLOTTI, L. CASELLA, A. PASINI and R. UGO, *J. Chem. Soc. Dalton Trans.* 4, 339(1977).
- 2.- P.J. MC CARTY, R. J. HOVEY, K. UENO and A.E. MARTELL, *J. Am. Chem. Soc.*, 77, 5820 (1975); A. EARNSHAW, E.A. KING and L.F. LARKWORTHY, *J. Chem. Soc. (A)*, 1048 (1968).
- 3.- a) K. FIGUEROA, R. PEÑA and M.M. CAMPOS-VALLETTE, *Z. Naturforsch.*, 44b, 923 (1989). b) K. FIGUEROA, M.M. CAMPOS-VALLETTE and M. REY-LAFON, *Spectrochim. Acta A*, (1990).
- 4.- G. SOCRATES " Infrared Characteristic Group Frequencies" Wiley and Sons Ed. N.Y. (1980)
- 5.- J.A. FANIRAN, K.S. PATEL and J.C. BAILAR Jr., *J. Inorg. Nucl. Chem.*, 36, 1547 (1974)
- 6.- N.B. COLTHUP, L.H. DALY and S.E. WIBERLEY, " Introduction to Infrared and Raman Spectra" Ed. Acad. Press (1964)
- 7.- Z. MEIC and H. GUSTEN, *Spectrochim. Acta*, 34A, 101 (1978)
- 8.- A.T. KOWAL and J. SKARZEWSKI, *Spectrochim. Acta*, 41A, 563 (1985); T.S. LOBANA, H.S. CHEENA and S.S. SANDHU, *ibid.* 42A, 735 (1986).
- 9.- K.NAKAMOTO, C. UDOVICH and J. TAKEMOTO, *J. Am. Chem. Soc.*, 92, 3973 (1970)
- 10.- T.S. LOBANA, H.S. CHEENA and S.S. SANDHU, *Spectrochim. Acta* 42A, 399 (1986); G. CANDRINI, W. MALAVASI, C. PRETI, G. TOSI and P. ZANNINI, *ibid.*, 39A, 635 (1983)

11.- S. AGRAWAL and N.K. SINGH, *Spectrochim. Acta* 42A, 507 (1986)

12.- K. NAKAMOTO "Infrared of Inorganic and Coordination Compounds". Ed. Wiley N.Y. (1963)

13.- M. MASSACESI, G. PONTICELLI, V. MAXIA and S. SEREI, *Spectrochim. Acta* 37A, 1035 (1981)

14.- D.M. ADAMS "Metal Ligands and Related Vibrations", Ed. Arnold. London (1967)

15.- V. KATOVIC, S.C. VERGEZ, D.H. BUSCH, *Inorg. Chem.*, 16, 1716 (1977)

16.- L. ARAYA, C. ABALLAY, M. OTERO, M. VILLAGRAN, J. VARGAS, G. MENA, A. ALVARADO, J. COSTAMAGNA and R. LATORRE, *Contrib. Cient. Tecnol. (USACH)*, 78(1987)

17.- C.H. WARREN, G. WETTERMARK and K. WEISS, *J. Am. Chem. Soc.*, 93, 4658 (1971)

18.- J.J. LOPEZ-GARRIGA, G.T. BABCO and V.F. HARRISON, *J. Am. Chem. Soc.*, 108, 7251(1986) and refs. therein.

Date Received: 02/14/91  
Date Accepted: 02/27/91